55,773 research outputs found

    Chaotic temperature dependence in a model of spin glasses

    Full text link
    We address the problem of chaotic temperature dependence in disordered glassy systems at equilibrium by following states of a random-energy random-entropy model in temperature; of particular interest are the crossings of the free-energies of these states. We find that this model exhibits strong, weak or no temperature chaos depending on the value of an exponent. This allows us to write a general criterion for temperature chaos in disordered systems, predicting the presence of temperature chaos in the Sherrington-Kirkpatrick and Edwards-Anderson spin glass models, albeit when the number of spins is large enough. The absence of chaos for smaller systems may justify why it is difficult to observe chaos with current simulations. We also illustrate our findings by studying temperature chaos in the naive mean field equations for the Edwards-Anderson spin glass.Comment: 10 pages, 5 figures; To be published in European Physics Journal

    Large-scale low-energy excitations in 3-d spin glasses

    Full text link
    We numerically extract large-scale excitations above the ground state in the 3-dimensional Edwards-Anderson spin glass with Gaussian couplings. We find that associated energies are O(1), in agreement with the mean field picture. Of further interest are the position-space properties of these excitations. First, our study of their topological properties show that the majority of the large-scale excitations are sponge-like. Second, when probing their geometrical properties, we find that the excitations coarsen when the system size is increased. We conclude that either finite size effects are very large even when the spin overlap q is close to zero, or the mean field picture of homogeneous excitations has to be modified.Comment: 11 pages, typos corrected, added reference

    Energy exponents and corrections to scaling in Ising spin glasses

    Full text link
    We study the probability distribution P(E) of the ground state energy E in various Ising spin glasses. In most models, P(E) seems to become Gaussian with a variance growing as the system's volume V. Exceptions include the Sherrington-Kirkpatrick model (where the variance grows more slowly, perhaps as the square root of the volume), and mean field diluted spin glasses having +/-J couplings. We also find that the corrections to the extensive part of the disorder averaged energy grow as a power of the system size; for finite dimensional lattices, this exponent is equal, within numerical precision, to the domain-wall exponent theta_DW. We also show how a systematic expansion of theta_DW in powers of exp(-d) can be obtained for Migdal-Kadanoff lattices. Some physical arguments are given to rationalize our findings.Comment: 12 pages, RevTex, 9 figure

    Multifractality and intermediate statistics in quantum maps

    Full text link
    We study multifractal properties of wave functions for a one-parameter family of quantum maps displaying the whole range of spectral statistics intermediate between integrable and chaotic statistics. We perform extensive numerical computations and provide analytical arguments showing that the generalized fractal dimensions are directly related to the parameter of the underlying classical map, and thus to other properties such as spectral statistics. Our results could be relevant for Anderson and quantum Hall transitions, where wave functions also show multifractality.Comment: 4 pages, 4 figure

    Anticoherence of spin states with point group symmetries

    Full text link
    We investigate multiqubit permutation-symmetric states with maximal entropy of entanglement. Such states can be viewed as particular spin states, namely anticoherent spin states. Using the Majorana representation of spin states in terms of points on the unit sphere, we analyze the consequences of a point-group symmetry in their arrangement on the quantum properties of the corresponding state. We focus on the identification of anticoherent states (for which all reduced density matrices in the symmetric subspace are maximally mixed) associated with point-group symmetric sets of points. We provide three different characterizations of anticoherence, and establish a link between point symmetries, anticoherence and classes of states equivalent through stochastic local operations with classical communication (SLOCC). We then investigate in detail the case of small numbers of qubits, and construct infinite families of anticoherent states with point-group symmetry of their Majorana points, showing that anticoherent states do exist to arbitrary order.Comment: 15 pages, 5 figure

    The silicate absorption profile in the ISM towards the heavily obscured nucleus of NGC 4418

    Get PDF
    The 9.7-micron silicate absorption profile in the interstellar medium provides important information on the physical and chemical composition of interstellar dust grains. Measurements in the Milky Way have shown that the profile in the diffuse interstellar medium is very similar to the amorphous silicate profiles found in circumstellar dust shells around late M stars, and narrower than the silicate profile in denser star-forming regions. Here, we investigate the silicate absorption profile towards the very heavily obscured nucleus of NGC 4418, the galaxy with the deepest known silicate absorption feature, and compare it to the profiles seen in the Milky Way. Comparison between the 8-13 micron spectrum obtained with TReCS on Gemini and the larger aperture spectrum obtained from the Spitzer archive indicates that the former isolates the nuclear emission, while Spitzer detects low surface brightness circumnuclear diffuse emission in addition. The silicate absorption profile towards the nucleus is very similar to that in the diffuse ISM in the Milky Way with no evidence of spectral structure from crystalline silicates or silicon carbide grains.Comment: 7 Pages, 3 figures. MNRAS in pres

    A comparison of two magnetic ultra-cold neutron trapping concepts using a Halbach-octupole array

    Full text link
    This paper describes a new magnetic trap for ultra-cold neutrons (UCNs) made from a 1.2 m long Halbach-octupole array of permanent magnets with an inner bore radius of 47 mm combined with an assembly of superconducting end coils and bias field solenoid. The use of the trap in a vertical, magneto-gravitational and a horizontal setup are compared in terms of the effective volume and ability to control key systematic effects that need to be addressed in high precision neutron lifetime measurements

    Magnetic exponents of two-dimensional Ising spin glasses

    Full text link
    The magnetic critical properties of two-dimensional Ising spin glasses are controversial. Using exact ground state determination, we extract the properties of clusters flipped when increasing continuously a uniform field. We show that these clusters have many holes but otherwise have statistical properties similar to those of zero-field droplets. A detailed analysis gives for the magnetization exponent delta = 1.30 +/- 0.02 using lattice sizes up to 80x80; this is compatible with the droplet model prediction delta = 1.282. The reason for previous disagreements stems from the need to analyze both singular and analytic contributions in the low-field regime.Comment: 4 pages, 4 figures, title now includes "Ising
    • …
    corecore